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                                 Background/Approach 
 
• Deep Learning Method:  distributed data-parallel approach to train deep 
neural networks  à Python framework using high-level Keras library with 
Google Tensorflow backend  
 
     -- major contrast with “Shallow Learning” approaches including SVM’s, Random Forests, 
Single Layer Neural Nets, etc. – including (i) deployment of accelerators (e.g., modern 
GPU’s); and (ii) move from DL software deployment on clusters to supercomputers: 
        à Titan (ORNL), Summit-Dev (ORNL); Piz Daint (CSCS);  
             Tsubame-3 (TiTech) + Intel Systems – Cori (LBNL), Theta (ANL) 
 
     -- stochastic gradient descent (SGD) used for large-scale (i.e., optimization 
        on supercomputers) with parallelization via mini-batch training to reduce  
        communication costs 
 
• DL Supercomputer Challenge:  scaling studies to examine if convergence 
rate saturates with increasing mini-batch size (to thousands of GPU’s) 



APPLICATION TOPIC:  FUSION ENERGY SCIENCE 
SITUATION ANALYSIS 

 
 

 
Most critical problem for Fusion Energy:  avoid/mitigate large-scale major disruptions   
• Approach:  Use of  big-data-driven statistical/machine-learning (ML) predictions for the 
occurrence of disruptions in EUROFUSION facility “Joint European Torus (JET)” 
• Current Status:  ~ 8 years of R&D results (led by JET) using Support Vector Machine 
(SVM) ML on zero-D time trace data executed on CPU clusters yielding ~ reported 
success rates in mid-80% range for JET 30 ms before disruptions , BUT > 95% with 
false alarm rate < 3% actually needed for ITER (Reference – P. DeVries, et al. (2015)  
• Princeton Team Goals include:  
(i) improve physics fidelity via development of new ML multi-D, time-dependent 
software including better classifiers;   
(ii) develop “portable” (cross-machine) predictive software beyond JET to other 
devices and eventually ITER;  and  
(iii) enhance execution speed of disruption analysis for very large datasets  
        à development & deployment of advanced ML software via Deep Learning 
Recurrent Neural Networks 
  



CLASSIFICATION 
●  Binary Classification Problem:  

○   Shots are Disruptive or Non-Disruptive 
●  Supervised ML techniques: 

○  Physics domain scientists combine knowledge base of 
observationally validated information with advanced statistical/ML 
predictive methods.   

●  Machine Learning (ML) Methods Engaged: 
Basic SVM approach initiated by JET team producing “APODIS” 

software leading now to Princeton’s New Deep Learning Fusion 
Recurrent Neural Net (FRNN) code  

●  Approach:  (i) examine appropriately normalized data; (ii) use training set 
to generate model; (iii) use trained model to classify new samples 
→ Multi-D data analysis requires new signal representations; 
→ FRNN software includes Deep Learning Convolutional and Recurrent 

Neural Net features.  
 
 



ρ = 0 

ρ = 1 

Mazon, Didier, Christel Fenzi, and Roland Sabot. "As hot as it gets." Nature Physics 12.1 (2016): 14-17. 

Higher Dimensional Signals 
 

• At each timestep: arrays instead of 
scalars 
• All as a function of ρ (normalized flux 
surface) 
• Raw 1D profile à convolution, optimize 
pooling for most salient features 
•Full feature vectors/arrays include zero-D 
plus 1D  

 
• Examples: 

– 1D Current profiles 
– 1D Electron temperature profiles 
– 1D Radiation profiles 

Challenges	&	Opportuni2es		



Identify 
Signals 

• Classifiers 

Preprocessing 
and feature 
extraction 

Train model, 
Hyper parameter 

tuning 

All data placed on appropriate 
numerical scale ~ O(1) 
e.g.,  Data-based with all 
signals divided by their 
standard deviation 
 
 

Princeton/PPPL DL 
predictions now advancing 
to multi-D time trace 
signals (beyond zero-D) 

Machine Learning Workflow 

Normalization 

Measured sequential data 
arranged in patches of 
equal length for training 
 

Use model for 
prediction 

• All available data analyzed; 
• Train LSTM (Long Short Term 
Memory Network) iteratively; 
• Evaluate using ROC (Receiver 
Operating Characteristics) and 
cross-validation loss for every 
epoch (equivalent of entire data 
set for each iteration)  

Apply ML/DL software on 
new data 



JET Disruption Data   

# Shots Disruptive Nondisruptive Totals 

Carbon Wall 324 4029 4353 

Beryllium 
Wall (ILW) 

185 1036 1221 

Totals 509 5065 5574 

JET studies à 9 Signals of zero-D 
(scalar) time traces, including 

Data Size (GB) 

Plasma Current 1.8 

Mode Lock Amplitude 1.8 

Plasma Density 7.8 

Radiated Power 30.0 

Total Input Power 3.0 

d/dt Stored Diamagnetic Energy 2.9 

Plasma Internal Inductance 3.0 

JET produces ~  
Terabyte (TB) of   

data per day 

  
~55 GB data 

collected from 
each JET shot 

 
➔ Well over 350 TB total 

amount with multi-    
dimensional data yet to 

be analyzed 



Image adapted from: colah.github.io 

●  “Deep” 
○  Learn salient representation of complex, higher dimensional data 
 

●  “Recurrent” 
○  Output h(t) depends on input x(t) & internal state s(t-1) 

 
Internal State  (“memory/context”) 

Deep Recurrent Neural Networks (RNNs):  Basic  Description 



Internal  
State 

Signals 

RNN 

Output 

Alarm 

T = 1 

CNN 

1D signals 

0D signals 1D 

Deep Recurrent Neural Nets:  Schematic 

Signals: 
• Plasma Current 
• Locked Mode Amplitude 
• Plasma Density 
• Internal Inductance 
• Input Power 
• Radiated Power 
• Internal Energy 
• 1D profiles (electron  
temperature, density) 
• … 

RNN 

Output 

> Threshold? 

Alarm 

Output: Disruption coming? 

RNN Architecture: 
•  LSTM 
•  3 layers 
•  300 cells per layer 

T = 0 [ms] 

Signals 

CNN 

1D signals 

0D signals 1D 

Signals 

RNN 

Output 

Alarm 

T = t 

CNN 

1D signals 

0D signals 1D 



FRNN Code PERFORMANCE:  ROC CURVES 
JET ITER-like Wall Cases @30ms before Disruption 

Performance Tradeoff: Tune True Positives (good: correctly caught disruption) vs. False 
Positives (bad: safe shot incorrectly labeled disruptive). 

 

TP: 93.5% 
FP: 7.5% 

TP: 90.0% 
FP: 5.0% 

ROC Area: 
0.96 

Data (~50 GB), 0D signals: 
•  Training: on 4100 shots from JET C-Wall campaigns 
•  Testing 1200 shots from Jet ILW campaigns 
•  All shots used, no signal filtering or removal of shots 



RNNs:		HPC	Innova2ons	Engaged	
 GPU training  

● Neural networks use dense tensor manipulations, efficient use of GPU FLOPS 
● Over 10x speedup better than multicore node training (CPU’s) 
 
 Distributed Training via MPI 
Linear scaling: 
● Key benchmark of “time to accuracy”: we can 
train a model that achieves the same results 
nearly N times faster with N GPUs 
Scalable 
● to 100s or >1000’s of GPU’s on Leadership 
Class Facilities 
● TB’s of data and more  
● Example: Best model training time on full 
dataset (~40GB, 4500 shots) of 0D signals 
training 

○  SVM (JET) : > 24hrs 
○  RNN ( 20 GPU’s) : ~40min 

 



Fusion Recurrent Neural Net (FRNN) Description 

•  Python deep learning code for disruption prediction in fusion (tokamak) 
experiments  
–  Reference: https://github.com/PPPLDeepLearning/plasma-python 

•  Implements distributed data parallel synchronous RNN training  
–  Tensorflow & Theano backends  

with MPI for communication 
–  FRNN code workflow is characteristic  

of typical distributed deep learning software 
–  Core modules: 

•  Models: Python classes necessary to construct, train,  
and optimize deep RNN models.   

•  Pre-process: arrange data into patches for stateful training; normalize 
•  Primitives: Python objects for key plasma physics abstractions 
•  Utils: a set of auxiliary functions for pre-processing, performance evaluation, and 

learning curves analysis 



Runtime: computation time  

Parallel Efficiency 

Communication: each batch of data requires time for synchronization 

Scaling Summary 



FRNN Scaling Results on GPU’s  

•  Tests on OLCF Titan CRAY supercomputer 
–  OLCF DD AWARD:  Enabled Scaling Studies on  
   Titan currently up to 6000 GPU’s 
–  Total ~ 18.7K Tesla K20X Kepler GPUs 
 
     Tensorflow+MPI  



 
 
 

                     CURRENT PERSPECTIVE 
 
Forecasting disruptions using machine learning is an important 
application of a general idea: 
 
 à Use multi outcome prediction to distinguish disruption 
types/scenarios 
  
 à Beginning now to move from prediction to active control 

 (including new experimental proposals on the U.S. DIII-D tokamak in 
San Diego, CA)  

  
 à Increasingly large and diverse data sets require building 
      scalable systems to take advantage of leadership class  
      computing facilities 
 



        Fusion Deep Learning (FRNN) Technical Summary 
 
• FRNN à a distributed data-parallel approach to train deep neural networks 
(stacked LSTM’s);  
• Replica of the model is kept on each “worker” à processing different mini-
batches of the training dataset in parallel;  
• Results on each worker are combined after each epoch using MPI; 
• Model parameters are synchronized via parameter averaging à with 
learning rate adjusted after each epoch to improve convergence   
• Stochastic gradient descent (SGD) used for large-scale optimization with 
parallelization via mini-batch training to reduce communication cost.  
à Challenge:  scaling studies to examine if convergence rate saturates/

decreases with increasing mini-batch size (to thousands of GPU’s).  
à Targeted Large HPC Systems with P-100’s for Performance Scaling 

Studies:  (1) “TSUBAME 3” @ TITECH with ~ 3K GPU’s – “Grand 
Challenge Runs”; (2) “PIZ-DAINT” Cray XC50 @ CSCS (Switzerland) with 
> 4K GPU’S; (3) “SUMMIT-DEV” @ OLCF leading to SUMMIT with VOLTA 
GPU’s   



New FRNN scaling tests: TSUBAME 3.0 

Very recent results: TSUBAME 3.0 supercomputer (TiTech, Tokyo, Japan) 
Tsubame 3.0 initial “Grand Challenge Runs” 
–  Order of thousand Tesla P100 SXM2 GPUs, 4 GPUs per node, NVlink 
–  Tensorflow+MPI, CUDA8, CuDNN 6, OpenMPI 2.1.1, GPU Direct 

 



        Fusion Deep Learning (FRNN) Technical Summary (continued) 
 
 NVIDIA Volta GPU’s è to be key element of 200 PF SUMMIT @ OLCF  
 
Associated Challenge:  requires  training neural networks with “half-precision floats”  
• Single-Precision à 32 bits (8 bits for exponent, 23 for fraction and 1 for sign) 
• Double-Precision à 64 bits 
NOTE:  FRNN code has produced many results with single precision - float32 and has now 
developed new half-precision float - 5 bits exponent, 10 bit fraction and 1 bit sign 
 
REFERENCE:   half-precision float deployment of FRNN with cross-benchmarking of new 
results vs. earlier single precision results à paper to be presented at SC’17 (Denver, 
CO)– includes description of changes in the weight update during SGD 
(Stochastic Gradient Descent) method to prevent vanishing gradients due to 
lower precision. 
 
• Looking forward to testing new half-precision FRNN software capability on 
NVIDIA Volta GPU’s at OLCF 
  



        Fusion Deep Learning (FRNN) Technical Summary (continued) 
  
à GOOGLE Article on Tensor Processing Units in Cloud: 
 
"Build and Train Machine Learning Models on our new Google Cloud TPU's" 
 (Tensor Processing Units) 
https://blog.google/topics/google-cloud/google-cloud-offer-tpus-machine-learning/ 
 
 The highlighted description highlights potential delivery of 11.5 PF of compute power to 
expedite training! 
 
Possible FRNN Software Relevance: 
Since FRNN software already uses the TensorFlow backend, our current plan is to try the 
Google Cloud TPU's -- beginning with their offer of free access to 1000 Cloud TPU's via the 
TensorFlow Research Cloud – for which we have applied. 
 
à APPROACH:  Comparison of time to prediction and associated deep learning 
neural nets training rates on supercomputers vs. that on the new Google 
Cloud TPU’s promises to be quite informative. 
  
  

 
  
  
  



 
 
 
 
• Fusion Energy Mission:   
  -- Accelerate demonstration of the scientific & technical  feasiblity of delivering Fusion Power  
  -- Most critical associated problem is to avoid/mitigate large-scale major disruptions. 
 
• ML Relevance to HPC:   
 -- Rapid Advances  on development of predictive methods via large-data-driven “machine- 
learning” statistical methods  
 -- Approach Focus:   Deep Learning/Recurrent Neural Nets (RNNs)  
-- Significance:   Exciting alternative predictive approach to “hypothesis-driven/first 
   principles” exascale predictive methods   
*** Convergence/Complementarity:   Physics-centric path-to-exascale HPC needed to 
introduce/establish improved Supervised ML Classifiers with associated features 
   
• Associated Challenge: 
→  Improvements over zero-D SVM-based machine-learning needed to achieve  > 95% 
success rate, <5% false positives at least 30 ms before disruptions -- with portability of software 
to ITER via enhanced physics fidelity (capturing multi-D) with improvement in execution time 
enabled by access to advanced HPC hardware (e.g., large GPU and possibly other 
supercomputing systems). 
 
 

Fusion Big Data ML/DL Application Summary   
    



Takeaways:  Deep Learning Analysis  

Use Higher-dimensional signals
CNN

0D signals  1D 

Te(⇢
) 

Automatically learn cross-machine,  
generalizable features

State: Action 

Control Algorithm 

Environment 

Reward Go from prediction to control
(deep reinforcement learning)

Take advantage of
world class HPC


